UNIVERSITY OF JAFFNA, SRI LANKA FACULTY OF ALLIED HEALTH SCIENCES

FIRST YEAR FIRST SEMESTER EXAMINATION IN BPharmHons-2023 PHACH 1173 PHARMACEUTICAL CHEMISTRY I

Date: 2 | UEU 2024 Time: 2 Hours

ANSWER ALL THE FOUR QUESTIONS

1.	1.1	1.1.1 Define isomerism.	(10 Marks)
		1.1.2 Diagrammatically illustrate the possible isomerism of	
		1.1.2.1 [Pt(NH ₃) ₂ NO ₂ Cl]	(20 Marks)
		1.1.2.2 [Co(NH ₃) ₄ Cl ₂] ⁺	(20 Marks)
		1.1.3 Briefly explain the administration of chelating agents to remove the	
		heavy metals from body with an example.	(10 Marks)
	1.2	1.2.1 Define conformational isomers.	(10 Marks)
		1.2.2 Explain why equilibrium constant (K) of methoxy cyclohexane is	(30 Marks)
		lower than methylcyclohexane.	
2.	2.1	2.1.1 Define reversible and irreversible processes.	(10 Marks)
2.	2.1	2.1.1 Define reversible and irreversible processes.2.1.2 An amount of 2 mole of an ideal gas at 300 K and 6 atm pressure	(10 Marks)
2.	2.1		(10 Marks)
2.	2.1	2.1.2 An amount of 2 mole of an ideal gas at 300 K and 6 atm pressure	(10 Marks)
2.	2.1	2.1.2 An amount of 2 mole of an ideal gas at 300 K and 6 atm pressure undergoes expansion isothermally to half the initial pressure. If this	(10 Marks)
2.	2.1	2.1.2 An amount of 2 mole of an ideal gas at 300 K and 6 atm pressure undergoes expansion isothermally to half the initial pressure. If this expansion takes place; calculate the work done by the gas on the	(10 Marks)
2.	2.1	2.1.2 An amount of 2 mole of an ideal gas at 300 K and 6 atm pressure undergoes expansion isothermally to half the initial pressure. If this expansion takes place; calculate the work done by the gas on the surrounding in each of the following cases (R-8.314 JK ⁻¹ mol ⁻¹).	
2.	2.1	 2.1.2 An amount of 2 mole of an ideal gas at 300 K and 6 atm pressure undergoes expansion isothermally to half the initial pressure. If this expansion takes place; calculate the work done by the gas on the surrounding in each of the following cases (R-8.314 JK⁻¹mol⁻¹). 2.1.2.1 Irreversibly against zero external pressure. 	(10 Marks)
2.	2.1	 2.1.2 An amount of 2 mole of an ideal gas at 300 K and 6 atm pressure undergoes expansion isothermally to half the initial pressure. If this expansion takes place; calculate the work done by the gas on the surrounding in each of the following cases (R-8.314 JK⁻¹mol⁻¹). 2.1.2.1 Irreversibly against zero external pressure. 2.1.2.2 Irreversibly against the 3 atm external pressure. 	(10 Marks) (15 Marks)

2.2.3 List the applications of eustatic mixtures in the pharmaceutical

industry.

(10 Marks)

(05 Marks)

3.1.2 Define shelf life of a drug.

(05 Marks)

3.2 Consider the following reaction,

$$A + B \longrightarrow Product$$

3.2.1 The initial concentration of B is much higher than that of A ($[B]_o \gg [A]_o$). Derive the integrated rate equation for a pseudo first-order reaction and half-life.

(40 Marks)

3.2.2 Draw the graph for concentration against time of the reaction mention in 3.2.1.

(10 Marks)

3.3 In a particular experiment it was found that the concentration of N₂O₅ in liquid Bromine varied with time as follows:

Time (s) 0 200 400 600 1000 $[N_2O_5]/(\text{moldm}^{-3})$ 0.110 0.073 0.048 0.032 0.014

3.3.1 Confirm that the reaction obeys first order in N_2O_5 .

(20 Marks)

3.3.2 Determine the rate constant and half-life of the above reaction.

(20 Marks)

4. 4.1 Define the followings.

4.1.1 Chirality

(05 Marks)

4.1.2 Enantiomer

(05 Marks)

4.1.3 Diastereomer

(05 Marks)

4.2 Indicate which of the following compounds are the chiral or achiral with (15 Marks) justification.

4.4 State the stereochemical relationship between the following molecules with justification.