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Abstract: Neonates with preterm, gastrointestinal dysfunction and very low birth weights are often
intolerant to oral feeding. In such infants, the provision of nutrients via parenteral nutrition (PN)
becomes necessary for short-term survival, as well as long-term health. However, the elemental
nutrients in PN can be a major source of oxidants due to interactions between nutrients, imbalances of
anti- and pro-oxidants, and environmental conditions. Moreover, neonates fed PN are at greater risk
of oxidative stress, not only from dietary sources, but also because of immature antioxidant defences.
Various interventions can lower the oxidant load in PN, including the supplementation of PN with
antioxidant vitamins, glutathione, additional arginine and additional cysteine; reduced levels of
pro-oxidant nutrients such as iron; protection from light and oxygen; and proper storage temperature.
This narrative review of published data provides insight to oxidant molecules generated in PN,
nutrient sources of oxidants, and measures to minimize oxidant levels.

Keywords: parenteral nutrition; preterm birth; oxidants; antioxidants; pro-oxidants; lipid peroxidation;
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1. Introduction

Preterm or premature birth and its complications cause an enormous economic burden
to a country. For instance, Canada spends nearly CAD 587.1 million for all premature
infants [1]. In Canada, an estimated 8% of newborns are born prematurely at 37 weeks or
less [2]. Moreover, over the last 14 years, the proportion of low-birth-weight babies (<2.5 kg)
has increased from 5.9% in 2003 to 6.5% in 2017 [3]. Premature and low-birth-weight
neonates may encounter difficulties such as respiratory, hepatocellular, and cardiovascular
complications, and have a higher risk of developing chronic health conditions later in life [4].
The majority of complications in neonates are related to oxidative stress that develops
early in life [5,6]. Newborns are at a higher risk of oxidative stress due to the exposure
of oxidants at an early growing period, from various dietary sources [7]. Furthermore, if
oxygen therapy is used during the neonatal period, this can be an additional source of
oxidant load, exacerbating oxidative stress [8,9].

The gastrointestinal tract of premature neonates is immature and inefficient with re-
spect to digestion, assimilation, and the absorption of nutrients for the newborn. Neonates
depend on adequate early nutrition, which not only safeguards life, but also provides
positive health outcomes in later life [10]. Starting feeds by mouth or nasogastric tube
(enteral feeding) as quickly as possible stimulates the development and function of the
gastrointestinal tract [11]. However, because of the lower gastrointestinal tract capacity,
immature gut function or congenital problems, and high demand for nutrients for their
accelerated growth, the consumption of recommended nutrients per day may require the
intravenous administration of nutrients (i.e., parenteral nutrition (PN)), in addition to
some enteral feeding. However, in some cases in extremely premature or low-birth-weight
neonates, or neonates with congenital anomalies of the gastrointestinal tract, all nutrients
might need to be delivered as total parenteral nutrition (TPN) [5]. PN is prepared by
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mixing elemental nutrients, including dextrose, amino acids, vitamins, minerals, and trace
elements, and intravenously delivering a lipid emulsion infused either separately, or mixed
with aqueous solutions.

Although TPN has become a crucial part of the clinical management of premature
and newborn infants, it is subject to oxidation, and is thus a source of oxidant exposure to
neonates [12]. Oxidants in TPN may also lead to the production of additional oxidation
products in vivo, which may detrimentally affect the health of the infant. The oxidant
load collectively generated in human neonates from various sources could lead to liver
diseases, bronchopulmonary dysplasia (BPD), gut atrophy, necrotizing enterocolitis, and
retinopathy [13,14]. Moreover, several animal experiments have demonstrated that the
exogenous oxidized molecules from TPN could cause hepatocellular damage, cholestasis,
apoptosis, and pulmonary fibrosis [15–19].

Despite in vivo antioxidants such as vitamin E, vitamin C, superoxide dismutase,
catalase, and glutathione [20,21] playing a major role to reduce oxidative stress, neonates
are even more prone to oxidative damage because antioxidant systems in newborns are
immature, especially in preterm infants. Moreover, premature neonates, to whom TPN
is prescribed more often, are more likely to be exposed to high amounts of peroxides
from endogenous and exogenous sources. For instance, numerous endogenous sources of
oxidative stress are from birth trauma, reperfusion injury from hypoxia, oxygen therapy,
acidosis, phototherapy, mechanical ventilation, infection, and inflammation [22,23]. The
exogenous sources of hydroperoxides are from oxidized TPN. The antioxidant systems
within neonates that remove these peroxides work at a lower capacity. Indeed, neonates
have lower amounts of vitamin E, β-carotene, and glutathione compared to adults [24–26].
Superoxide dismutase and catalase activities are also lower in preterm neonates compared
to term neonates, children, and adults [27]. Although the antioxidant effects of the iron
transport protein, apotransferrin, and the iron oxidizing protein, ceruloplasmin, are nearly
200-fold higher than that of vitamin E [28], they are found at lower concentrations in
preterm than term neonates and children [29]. Therefore, exogenous antioxidants and
precursors for the synthesis of antioxidants should be supplied via TPN in neonates.

There are also antioxidant systems that depend on the sufficient dietary intake of pre-
cursors. For example, synthesis of the most important intracellular antioxidant, glutathione,
depends on sufficient dietary cysteine [17]. In order to synthesize glutathione, the active
form of methionine adenosyltransferase (MAT-SH), a key metabolic enzyme, involves
in transmethylation of the first step of methionine catabolism to provide the precursor,
cysteine for the synthesis of glutathione [30]. In the context of TPN, MAT-SH is converted
to an inactive form of methionine adenosyltransferase (MAT-SOH) by hydrogen peroxide
generated in TPN, resulting in a reduction in the S-adenosylmethionine synthesis [31]
(Figure 1). The low activity of MAT-SH is regenerated from MAT-SOH by glutathione.
In addition, the detoxification process of peroxides by glutathione peroxidase needs the
reduced form of glutathione (GSH) [32]. Most importantly, the availability of cysteine from
methionine is a limiting step for the synthesis of glutathione because of the immaturity of
cystathionase [17]. Hence, cysteine is deemed a conditionally essential amino acid, and may
become essential during TPN feeding. Alternatively, direct glutathione supplementation
with at least 10 µM of oxidized glutathione (GSSG) could also have a beneficial effect in
lowering the oxidant load [17].

Overall, it is essential to understand the components within TPN can lead to oxidation
in vitro as well as in vivo, and how TPN could be adapted to reduce the oxidant load as well
as enhance antioxidant capacity in the neonatal body. Moreover, oxidative stress from TPN
feeding can come from not only the oxidation of nutrients in vitro in mixed TPN solutions,
but also from in vivo reactions from infusing pro-oxidant molecules intravenously, both
of which can overwhelm immature antioxidant systems. Hence, this narrative review
discusses insights on oxidant molecules generated in TPN, nutrient sources of oxidants,
in vivo impacts, and measures to minimize oxidant levels.
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Figure 1. Glutathione biosynthesis and the role of glutathione on the reactivation of MAT-SOH. Hy-
drogen peroxide (H2O2) generated in the total parenteral nutrition (TPN) reacts with the –SH group
of methionine adenosyltransferase (MAT), converting it to –SOH, which is the oxidized form of the
thiol group, resulting in a vicious cycle. The reduced form of glutathione (GSH) reforms the MAT-SH
from MAT-SOH by generating MAT–mixed disulfide (MAT-SSG). SAM, S-adenosylmethionine; SAH,
S-adenosylhomocysteine; GCLC, catalytic subunit of glutamate–cysteine ligase; GCLM, modifier
subunit of glutamate cysteine ligase.

To develop this narrative review, we carried out a literature search using primary
sources, including original scientific articles and review papers, and secondary sources,
including web pages, bibliographic indexes, and databases. PubMed, SciELO, Embase,
Scopus, Web of Science, and Google Scholar were used to select records. We used a
variety of keywords, including “parenteral nutrition”, “total parenteral nutrition”, “ox-
idants”, “lipid peroxidation”, “amino acid oxidation”, “parenteral nutrition-associated
liver disease”, “gut/intestinal atrophy”, “bronchopulmonary dysplasia”, “micronutrients”,
“antioxidants”, and “pro-oxidants”. All articles published up to April 2021 that met the
scientific methodological standards related to the main topic and subsections of the review
were processed.

2. In Vitro Oxidation of TPN

TPN is prepared by combining individual nutrients together into a bag before ad-
ministration, and is referred to as all-in-one TPN. The interaction among the nutrients
within the bag is a major source of oxidants, in part due to chemical reactions among
elemental nutrients under various conditions. These chemically altered elemental nutrients
in the bag can result in oxidant production that affects metabolism within neonates [5].
For example, the solution can generate oxidants such as hydrogen peroxide and organic
peroxides (R-O-O-R’)—compounds possessing one or more oxygen–oxygen bond, as a con-
sequence of redox reactions [33–35]. Organic peroxides can be classified into different types
of peroxides that correspond to the peroxide structure. Among the classification, hydroper-
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oxides are the major peroxide form; of these, organic (alkyl) hydroperoxides (R-O-OH), are
among the more common hydroperoxides. Peroxides further non-specifically react with
lipids, amino acids, vitamins, and trace elements in the TPN. For instance, the oxidative
degradation of lipids generates lipid hydroperoxides [36], which are the primary products
of the free-radical-initiated peroxidation of polyunsaturated fatty acids [37]. These oxidant
molecules, together with amino acid oxidation and a high level of elemental pro-oxidant
nutrients including vitamin C, copper, and iron within the TPN, may overwhelm neonatal
antioxidant systems and cause adverse outcomes in neonates.

2.1. Oxidation of Lipid Emulsions for TPN

Lipids are more prone to be oxidized by free radical attack during oxidative stress [37].
Lipids are oxidized by enzymatic and non-enzymatic reactions. Non-enzymatic oxidation
is mediated by free radical and non-radical oxidation [38]. In the free radical process,
peroxides lead to hydrogen abstraction at sites of unsaturation (or carbon–carbon double
bonds) within lipids, resulting in free radical production; the free radicals eventually react
with oxygen to generate lipid peroxyl radicals and hydroperoxides [38] (Figure 2). The
free radical form, a hydroperoxyl radical formed during lipid peroxidation, plays a crucial
role in oxidant injury [36]. Stored lipid emulsions, and especially soybean-based lipid
emulsions, which are eventually added to TPN, can generate high concentrations of oxi-
dized lipids even before administration to neonates as part of TPN [39]. Helbock et al. [40]
reported that commercial lipid emulsions (such as Intralipid-20%™; rich in omega-6 fatty
acids) were contaminated with approximately 300 µM of hydroperoxides. In addition,
hydroperoxyl radicals generated in TPN are protonated and generate hydrogen peroxide,
which can further react with iron or copper to produce hydroxyl radicals via the Fenton
reaction [41,42] (Figure 3A). In Haber–Weiss reactions, superoxide radicals can react with
hydrogen peroxide and generate hydroxyl radicals (Figure 3B). Superoxide radicals further
react with the oxidized form of metal ions to yield oxygen and reduced forms of metal ions,
which can again participate in redox reactions.

A variety of secondary products, including aldehydes, alkanes, alkenes and con-
jugated dienes, can be formed through secondary reactions during lipid peroxidation
reactions [43]. Among the secondary products, 4-hydroxy-2-nonenal is an important ox-
idative molecule formed from the peroxidation of omega-6-series fatty acids, whereas
4-hydroxy-2-hexenal is generated from the peroxidation of omega-3-series fatty acids.
However, the formation of other oxidative products has also been proposed. For exam-
ple, F2-isoprostanes, prostaglandin F2-like compounds, are produced by the free-radical-
mediated non-enzymatic oxidation of arachidonate [37,44]. With high oxygen tension,
the formation of F2-isoprostanes is limited [45]. Isofuran, a similar product, containing
a substituted tetrahydrofuran ring of F2-isoprostanes, has been examined as a marker of
oxidative stress during increased oxygen tension. In addition, malondialdehyde (MDA) is
another oxidative molecule that can be produced from lipid peroxidation. MDA is highly
cytotoxic and can rapidly attach to proteins or nucleic acids in cells [46]. For example, the
elevated plasma concentration of MDA in children who received long-term cyclic TPN
caused liver damage [47]. Additionally, Weinberger et al. [48] reported that elevated MDA
is associated with hepatocellular injury in TPN-administered preterm infants of less than
35 weeks of gestation. MDA detection is used in the thiobarbituric acid reactive substance
(TBARS) assay, but it lacks specificity because it measures MDA equivalents [49]; moreover,
other aldehydes, including 2-alkenals and 2,4-alkadienals, and additional molecules such
as sugars, can react with thiobarbituric acid [50]. Hence, mass spectrometry (GC-MS/MS)
methods have been developed to detect MDA, as well as other oxidative markers [51].
Overall, any in vitro assessment of peroxides before the administration of TPN would help
to minimize oxidants that are infused into parenterally fed neonates.
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Figure 2. Lipid peroxidation of unsaturated fatty acids. Step 1: abstraction of a proton by free
radicals, generating a carbon-centered lipid radical. Step 2: molecular rearrangement to generate a
stabilized conjugated diene. Step 3: oxygen reacts with an unsaturated fatty acid radical to form a
lipid peroxyl radical. Step 4: the lipid peroxyl radical abstracts H+ from another source to generate
lipid hydroperoxide. Step 5: the lipid peroxyl radical breaks down to form aldehydes, including
malondialdehyde (MDA), 4-hydroxy-2-nonenal (from omega-6 fatty acids) and 4-hydroxy-2-hexanal
(from omega-3 fatty acids). Step 6: lipid hydroperoxides can react with Fe2+ via Fenton-type reactions,
producing LO• radicals.
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Figure 3. The formation of ascorbate radicals, hydroxyl radicals, and superoxide radicals, generated
from ascorbic acid. (A) Hydrogen peroxide (H2O2) reacts with a ferrous ion and generates a hydroxyl
radical according to the Fenton reaction; (B) the formation of a hydroxyl radical via the Haber–Weiss
reaction. AH2, ascorbic acid; AH−, ascorbate anion; AH•, ascorbate radical; A•−, dehydroascorbate;
O2
•−, superoxide radical; HO•, hydroxyl radical.
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The fatty acid composition of different lipid emulsions likely affects the concentration
and profile of oxidative products and associated oxidative stress, but few comparative
studies exist. In three-day-old guinea pigs, in comparison to Intralipid, a four-day adminis-
tration of SMOFlipid increased oxidative stress, in terms of increased oxidation of redox
potential and apoptosis, and also reduced the alveolarization index [52]. However, the
total antioxidant potential was high in infants who received SMOFlipid compared to that
in infants who received Intralipid [53]. Although the administration of Omegaven reverses
the adverse effects caused by Intralipid and SMOFlipid [54,55], studies on in vitro and
in vivo oxidation are limited. Overall, more studies are needed to examine the oxidative
status of newer emulsions, such as SMOFlipid and Omegaven, relative to Intralipid.

2.2. Oxidation of Amino Acids within TPN

The amino acid formulations for TPN on the market have all nine of the essential
amino acids (histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine,
tryptophan, and valine) and a varying composition of nonessential amino acids, depending
on solubility and stability [56]. The composition of amino acids in TPN should be ideal for
the rate of protein synthesis and growth of tissues by neonates. Moreover, the composition
should also consider that exclusive TPN administration bypasses the gut, which leads
to gut atrophy, and this can alter the amino acid requirement profile for neonates [57].
In addition, the amino acid composition should be ideal for other roles beyond protein
synthesis, such as nitric oxide (NO) synthesis using arginine; synthesis of the key cellular
redox molecule glutathione using glutamate, cysteine, and glycine; inter-conversion of
amino acids such as arginine, proline, and glutamate; and methylation reactions using
methionine. Thus, the amino acid recommendations for neonates should also accommodate
non-protein requirements and be optimum for all functions in a growing neonate.

Despite the importance of the amino acids that are delivered through TPN, several
of the amino acids can be oxidized prior to neonatal delivery. Notable amino acids that
are quickly modified by oxidation include cysteine and methionine, whereas most other
amino acids usually need prolonged exposure to oxidants to become oxidized [58]. For
instance, one-electron oxidation of cysteine by reactive oxygen species generates thiyl
radicals, whereas two-electron oxidation between cysteine by reactive oxygen species
produces sulfenic acid [59,60], which leads to loss of a cysteine possessing protein func-
tions [61]. Although the infusion of high doses of cysteine in TPN to preterm infants
is considered safe, it was reported to not increase the amount of plasma glutathione or
cystine levels [62], and it increased nitrogen retention in tissues [63]. The other sulfur
amino acid, methionine, produces two diastereomer structures—methionine-S-sulfoxide
and methionine-R-sulfoxide—during its oxidation, because it contains a prochiral cen-
ter [64]. Hence, availability of methionine for cysteine and protein synthesis can be limited
by oxidation. It is also important to note that cysteine is unstable in TPN solutions, and
often undersupplied because of its solubility. However, according to the new guidelines
from the American Society for Parenteral and Enteral Nutrition (ASPEN) [65], the supply of
L-cysteine as the hydrochloride (HCl) salt to TPN is beneficial, including the acidification
of the TPN admixture, which can enhance the solubility of calcium and phosphate.

2.3. Role of Vitamins in the Oxidation of TPN Solutions

Premature and low-birth-weight infants require vitamin supplementation to prevent
deficiencies because they have low body storage and accelerated growth [66]. Among
those vitamins, vitamins E and C are important antioxidants in neonates [67]. Vitamin E
is an extracellular lipid-soluble antioxidant, whereas vitamin C is an extracellular water-
soluble antioxidant [21,68]. A multivitamin preparation (MVP) that contains all lipophilic
and hydrophilic vitamins can be added to TPN to perform the vitamins’ vital functions,
including antioxidant activity. However, the anti-peroxide activity of MVP-supplemented
TPN or lipid emulsions is still not clear. Lavoie et al. [24] claimed that 6 h of light-protected
incubation of a fat-free TPN solution and lipid emulsion (Intralipid—10%) without the
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admixture of MVP did not significantly generate peroxides, whereas MVP added to a
fat-free TPN solution and TPN with a lipid emulsion generated a threefold (from 66 µM to
189 µM) and a twofold (from 126 µM to 244 µM) rise in tert-butyl hydroperoxide (TBH)
levels, respectively. They also observed that TBH formation further increased to 300 µM
when the solutions were exposed to light for six hours [69]. The peroxide activity of MVP
can be explained by the presence of polysorbate, riboflavin, and ascorbate.

2.3.1. Polysorbate

Polysorbate is added during the preparation of multivitamin mixtures to solubilize
both immiscible lipophilic and hydrophilic vitamins in the same medium. Polysorbate is
oxidized when exposed to light, because it contains fatty acid esters of polyoxyethylene sor-
bitan [70]. Laborie et al. [71] demonstrated that TBH levels slowly increased from 860 µM
to 900 µM when TPN was incubated for 24 h with polysorbate (polysorbate 20 (1 mg/L)
and polysorbate 80 (1.6 mg/L)). However, the formation of peroxides by polysorbates is
quite low compared to peroxides generated by other components in the TPN.

2.3.2. Riboflavin

Among the water-soluble vitamins, riboflavin is an important precursor for the syn-
thesis of the biological redox molecules flavin mononucleotide (riboflavin 5′-phosphate)
and flavin adenine dinucleotide (adenosine 5′-diphosphate) [72]. The source of riboflavin
in MVP is riboflavin 5′-phosphate sodium, which is a highly photosensitive vitamin [71].
Riboflavin in MVP-containing TPN catalyzes the oxidation of ascorbate by oxygen to gen-
erate peroxides [73] (Figure 4). After exposure to light, riboflavin undergoes intersystem
conversion from a singlet riboflavin to a strongly oxidizing triplet riboflavin state [74]. The
triplet riboflavin is then reduced by an electron donor, such as ascorbic acid, to generate
an ascorbyl radical and riboflavin radical [73]. The reduced riboflavin reacts with O2 and
produces superoxide, while regenerating the riboflavin. Superoxide reacts with ascorbyl
radicals and hydrogen peroxide [73] (Figure 4). For instance, Kim et al. [73] reported that,
after 24 h of incubation, hydroperoxide concentrations were significantly increased in
TPN after mixing flavin mononucleotide and ascorbic acid. Photoprotection of riboflavin
minimizes the generation of peroxides [73].

2.3.3. Vitamin E

Vitamin E has four molecular structures (α, β, γ, and δ) of tocopherols and tocotrienols.
Among the different structures, the α-molecular structure has the highest vitamin E activity.
The natural form of the α-tocopherol stereoisomer is the RRR-α-tocopherol, whereas all-
rac-α-tocopheryl acetate is the usual synthetic form. Intralipid predominantly contains
the γ-tocopherol form of vitamin E, at 3.8 mg/100 mL; SMOFlipid and Omegaven (rich
in omega-3 fatty acids) contain all-rac-α-tocopherol, at 20 mg/100 mL and 30 mg/100 mL,
respectively. Vitamin E is also known to have distinct biological functions, including
the activation of bile acid and xenobiotic metabolism. In addition, tocopherol efficiently
prevents lipid peroxidation when another electron donor is present in TPN to reconvert
a tocopheryl radical to a non-radical form. Usually, vitamin C acts as an electron donor
to the tocopheryl radical to regenerate tocopherol. For instance, clinical and experimental
studies have demonstrated that vitamin E supplementation alone does not produce a
beneficial effect on oxidative stress leading to atherogenesis, but it works synergistically
when co-administered with vitamin C to effectively reduce the oxidative stress [75,76].
For example, Ng et al. [77] found that vitamin E, in Omegaven-supplemented TPN or
Intralipid-containing TPN after adding extra vitamin E, prevented the elevation of biliary
and lipidemic markers (direct bilirubin, gamma glutamyl transferase, serum triglyceride,
low-density lipoprotein, and hepatic triglyceride) of parenteral nutrition-associated liver
diseases (PNALD) of preterm piglets. The prevention was believed to be due to the
protective mechanism of vitamin E and the presence of other electron donors in the solution.
For instance, the inclusion of vitamin E in newer, highly polyunsaturated fish-oil-based
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emulsions that are available on the market (i.e., Omegaven and SMOFlipid) has been
shown to prevent the oxidation of fatty acids [78]. On the other hand, the failure to prevent
cholestasis developed by TPN feeding is explained by the presence of high plant sterols and
the reaction of α-tocopherol with peroxyl radicals to form α-tocopheroxyl radicals, which
leads to further oxidation to α-tocopheryl quinone if lacking electron donors [79,80]. Hence,
supplementation of vitamin E and omega-3 fatty acids may protect from oxidative stress.
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2.3.4. Vitamin C

The antioxidant activity of vitamin C is supported by several studies [81,82]. Beyond
its antioxidant properties, vitamin C also has anti-inflammatory and immune-enhancing
functions, and it acts as a cofactor for many enzymes, including hydroxylases and oxyge-
nases [41]. However, humans and only a few other mammals (e.g., primates, bats, and
guinea pigs) require L-ascorbic acid in their diet daily, because it cannot be synthesized due
to absence of the enzyme L-gulonolactone oxidase [83]. Vitamin C scavenges free radicals,
such as hydroxyl radicals, aqueous peroxyl radicals, and superoxide anions, and nonradical
species, including singlet oxygen, nitroxide, and peroxynitrite [84]. Vitamin C first releases
an electron from ascorbate (AH−) to form an ascorbyl radical (A•−), and then releases a
second electron from A•− to produce the diketone moiety of dehydroascorbic acid. Both
the ascorbyl radical and dehydroascorbic acid have low reduction potentials [85]. Hence,
these two molecules can neutralize most biologically relevant radicals and oxidants. In
addition, Buettner and Jurkiewicz [86] reported that the ascorbyl radical has minimal reac-
tivity because of its resonance stabilization of the unpaired electron (k2 = 2 × 105 M−1s−1).
Dehydroascorbic acid serves as the strong reducing form of ascorbic acid and defends it
from oxidation. In addition to the scavenging action of vitamin C, it regenerates other
antioxidants, including α-tocopherol and glutathione [87]. The advantage of vitamin C is
that it can be regenerated from the ascorbyl radical and dehydroascorbic acid by enzymatic
and non-enzymatic pathways [84].

In contrast to the above beneficial effects, high doses of vitamin C could exhibit
pro-oxidant effects because the hydroxyl groups of ascorbic acid are reactive, towards
singlet oxygen, hydroxyl radicals, hydroperoxide radicals, and hydrogen peroxide. For
example, hydrogen peroxide generated in TPN solutions reacts with dehydroascorbate
spontaneously to produce ascorbylperoxide [88,89], which is associated with detrimen-
tal health outcomes. In the presence of iron, the ascorbate could reduce Fe3+ to Fe2+,
subsequently resulting in the generation of an ascorbate radical [86] (Figure 3A). In ad-
dition, the electrons from ascorbate can reduce Cu2+ to Cu+, and eventually generate
superoxide as per Haber–Weiss reactions, as mentioned above. In newborn guinea pigs,
ascorbylperoxide causes hypo-alveolarization and the apoptosis of lung tissue as well as
higher glutathione redox potential with increasing ascorbylperoxide concentration [18].
Mohamed et al. [90] observed higher urinary ascorbylperoxide levels in infants who were
TPN-fed for seven days.

The stability of ascorbic acid in TPN is also another reason for its efficient protection
from oxidants. For example, ascorbic acid is more stable in an acidic pH. The stability of
ascorbic acid is altered when the solution is exposed to oxygen, light, high temperature, and
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pro-oxidants such as iron and copper. Burge et al. [91] reported that vitamin C measured
by the spectrophotometric method of dinitrophenylhydrazine in a TPN solution containing
10% amino acids, 50% dextrose, and multivitamin (100 mg ascorbic acid) was relatively
stable for the first eight hours, and after that, the vitamin C level dropped gradually,
such that by 32 h, the concentration of ascorbic acid decreased to 74% of the original
concentration. Burge et al. [91] also claimed that the loss of ascorbic acid was higher (60%
of the original concentration) when the added trace element solution contained 1.2 mg
copper sulfate, compared to TPN without copper. The pro-oxidant activity of vitamin C
can be avoided by maintaining an optimum concentration of vitamin C and providing
other electron donors.

2.4. Role of Trace Elements in Oxidation of TPN Solutions

Trace elements are vital micronutrients in TPN. They play an important role in physi-
ological and metabolic functions, including enzymatic reactions. Substantial studies on
trace elements in TPN solutions have focused on the prevention of micronutrient deficien-
cies [92–94], although toxicity is also a concern with the intravenous infusion of minerals,
which bypasses key excretory regulation mechanisms for many minerals, especially iron,
copper, and zinc [95]. However, studies evaluating the oxidative effect of trace elements in
TPN are limited. Steger and Mühlebach [96] reported that peroxide levels (as a relative per-
oxide value) were significantly increased from 0.52 to 1.92 when mixing the trace elements
(2.79 mg iron, 3.27 mg zinc, 0.27 mg manganese, 0.32 mg copper, 0.026 mg chromium,
0.024 mg selenium, 0.019 mg molybdenum, 0.95 mg fluoride, and 0.13 mg iodine per
10 mL) with TPN and incubating the mixture at room temperature for 19 days. These
higher peroxide levels could be explained by the presence of pro-oxidants such as iron,
copper, manganese, and zinc.

Intravenous administration of iron has been proposed in preterm neonates because the
intestinal absorption of iron is poor during the first weeks of life [97,98]; however, caution
is warranted. Free iron stimulates the formation of free radicals, whereas conjugated iron
(e.g., iron dextran, iron gluconate) prevents the formation of peroxides in TPN solutions.
Conversely, Grand et al. [99] used iron saccharate in TPN, and they reported that the lipid
peroxide levels (as MDA) increased from 810 nM to 1586 nM within a 24-h incubation
without light exposure. This is supported by Grand et al. [99], who showed that the
concentration of MDA in an all-in-one TPN solution with iron was high, suggesting that
the generation of lipid peroxides formed quickly when iron was present in TPN solutions.
Another aspect to consider is that prolonged iron infusion via TPN can lead to dangerously
high iron levels, because the body does not have an effective excretory system for absorbed
iron [95]; this high iron status could prolong oxidative damage well beyond TPN feeding.

Iron and copper in TPN can also further catalyze oxidative reactions through interac-
tions with other nutrients. For instance, ascorbic acid readily induces hydrogen peroxide
generation in the presence of Cu2+ [100]. Although iron is a highly reactive metal, as well as
being a strong biological oxidant and a reducing agent, the pro-oxidant activity of copper
is more pronounced than iron [100]. Zinc and manganese may have similar effects on the
generation of peroxides, but less is known about those interactions.

3. Parenteral Nutrition and Environmental Conditions

In addition to the nutrient composition of TPN, its preparation and storage environ-
ment can also contribute to the oxidation of its components. As briefly discussed above,
light exposure is a key factor that can increase oxidant levels, but TPN can also generate
additional oxidants when exposed to oxygen during preparation, storage, and infusion
at the bedside. Moreover, the temperature in neonatal intensive care units can induce the
formation of oxidative molecules. It is essential to minimize these conditions to limit the
production of oxidants in TPN.
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3.1. TPN Exposure to Light

As briefly mentioned, the exposure of TPN to ambient light or to light during the
phototherapy of a neonate induces the generation of peroxides. Indeed, the oxidation of
lipid emulsions is particularly immense when exposed to ambient light or phototherapy in
a clinical setting. For example, Laborie et al. [101] found that the peroxide concentration
in light-exposed TPN was between 190 and 300 µM, compared to 60 and 130 µM when
TPN was protected from light. Peroxides generated in vitro from light exposure including
4-hydroxy-2-nonenal, MDA [99,102] and 4-hydroxy-2-hexenal have been identified in lipid
emulsions [33]. Moreover, many light-induced reactive oxidative species can interfere
with endogenous NO levels, resulting in increased vasoconstriction and exacerbating
physiological effects of TPN feeding.

Fat-free TPN, including amino acids and vitamin mixtures, can also be contaminated
with hydrogen peroxide after mixing with light-exposed riboflavin [103,104]. In another
study, a light-exposed mixture containing 10% dextrose, amino acids, and electrolytes
generated 25 µM peroxides, but photo-protection over six hours at room temperature did
not result in peroxide production [5]. Interestingly, the concentration of peroxides jumped
threefold (75 µM) after adding a lipid emulsion. Notably, the addition of 1% MVP induced
the generation of peroxides to 350 µM, even after two hours of incubation; however, the
concentration of peroxides dropped to 250 µM when protecting the solution from light [5].
Therefore, the generation of peroxides in TPN is dependent on numerous combinations of
nutrients, but light protection is critical to minimize many of these interactions.

The protection of TPN from photo-oxidation in a clinical setting is challenging to
achieve [24] because it is difficult to protect the TPN bag and its connected tubing efficiently.
However, some studies have demonstrated effective photo-protection by covering it with
aluminum foil or opaque plastic polythene. For instance, Laborie et al. [71] examined
peroxide levels in a TPN bag which was shielded from light using a black garbage bag,
and by using different coloured tubing including orange, yellow, and black. They observed
that yellow tubing was as effective as a completely opaque black tube or tube covered
with aluminum foil in preventing further oxidation when exposed to light. Indeed, the
yellow tube was more suitable to see air bubbles or precipitation than the black tube [71].
Moreover, protection from light during product preparation must also be considered. The
generation of free radicals in any solution can be lowered simply by shielding TPN from
light during preparation [105], although how practical that is in a manufacturing plant or
hospital pharmacy needs to be evaluated.

3.2. TPN Exposure to Oxygen

A TPN solution exposed to oxygen during its preparation and infusion to a neonate
gains oxidant molecules at each step. Oxygen is the basis of aerobic life of living organ-
isms, but it is frequently reactive by itself [106]. It reacts with an electron from a donor,
such as a monounsaturated or polyunsaturated fatty acid, certain amino acid residues
such as tyrosinyl- or tryptophanyl-residues, or vitamin C, to generate a superoxide anion.
Laborie et al. [101] demonstrated that the removal of oxygen by nitrogen from a test solu-
tion of neonatal TPN inhibited the generation of peroxides, but they also observed that
the effect of the oxygen washout was lost when the solution was subsequently infused
via an intravenous infusion set. The removal of oxygen from preparation to infusion
would be a difficult task. For example, even if all the air was removed from TPN bags, the
effect to minimize the peroxides is lost because the chance of oxygenation is high when
administering the TPN to neonates [19].

3.3. Effect of Storage on Oxidants in TPN Solutions

Within TPN, amino acids are typically stable for about four months at 2–8 ◦C, except
for cysteine, which slowly dimerizes to yield cystine, giving a yellow discoloration of
parenteral solutions with storage time [107]. Pitkänen et al. [108] reported that lipid
degradation and the production of oxidants were high during the storage of Intralipid.
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They determined that levels of pentane, generated from the peroxidation of omega-6 fatty
acids [109], were significantly higher after six months of storage after adding Intralipid
to phosphate-buffered saline [108]. They also found that the infusion of lipid emulsions
increased the concentration of exhaled pentane during the first week of life in premature
infants, suggesting the significant peroxidation of lipids in TPN during storage. Intravenous
infusion of TPN contaminated with oxidants in vitro can overwhelm the antioxidant
capacity of neonates and cause adverse effects.

On the other hand, the materials used to manufacture TPN bags may also affect
oxidation reactions and lead to harmful effects in neonates. For instance, until recently,
most TPN bags were made of polyvinyl chloride (PVC) with flexible plasticizers of di(2-
ethylhexyl) phthalate (DEHP) [110], which is a carcinogenic, hepatotoxic, and teratogenic
chemical compound [111]. Lipid-soluble DEHP is leached from PVC when mixing with
lipids [111], which could result in increased tissue uptake. Studies have reported that
detectable amounts of DEHP in intravenous solutions stored in PVC bags were indeed
observed [110–112]. An alternate material, ethylvinyl acetate (EVA), which exhibits good
flexibility and high resistance to external influences and adhesion, has also been used in
TPN bags [113]. However, Balet et al. [114] found that hydroperoxides produced in TPN
mixtures that were stored within multilayer bags containing both EVA and polyvinylidine
were lower than in the TPN mixtures that were stored in EVA-only bags for 14 days at
37 ◦C. However, the MDA generated in the two bags was not significantly different.

In addition to the TPN bags, the composition of medical tubing also needs to be con-
sidered. The tube used between the TPN bag and a venous catheter is made of PVC–DEHP.
Loff et al. [115] reported that before starting a perfusion of TPN using the catheter line, the
DEHP concentration was nearly 0.06 µg/mL. After perfusion, the concentration of DEHP
in the solution jumped to approximately 2 µg/mL. This is consistent with other recent
studies [116,117]. Hence, alternative plasticizer-free materials need to be investigated.

4. In Vivo Impact of Oxidized TPN after Infusion

Although TPN is a life-saving therapy for sick neonates, it is linked to harmful compli-
cations after prolonged administration [12]. Numerous in vivo studies have been carried
out to examine the effects of oxidant molecules from contaminated TPN after infusion.
Clinical studies show that additive effects of O2 supplementation and TPN administration
caused oxidative stress and an increased risk of bronchopulmonary dysplasia (BPD) in
neonates under 29 weeks of gestation [118]. Plasma F2-isoprostane levels were increased
in preterm neonates between 23 and 28 weeks of gestation, who received olive-oil- or
soybean-oil-based lipid emulsions [119]. In an observational study, Unal et al. [120] identi-
fied oxidative stress after a seven-day infusion of either SMOFlipid or ClinOleic (a mixture
of refined soybean oil 20% and refined olive oil 80%) in very-low-birth-weight infants
between 25 and 32 weeks of gestation. Additional clinical studies are needed to examine
metabolic changes in response to oxidized TPN, as well as tissue-specific changes to the
human metabolome and proteome. In animal models, Chessex et al. [121] reported that
light-exposed MVP-supplemented TPN was associated with an elevated urinary excretion
of nitrogen (by 40%) compared to control TPN in three-day-old guinea pig pups. Another
study reported that guinea pigs on light-exposed TPN had more hepatic steatosis, higher
liver weight, and elevated isoprostane F2α concentrations compared to animals fed light-
protected TPN [19,122]. As already noted for clinical studies, detailed animal studies are
needed to examine metabolic complications, including glucose intolerance, which may
arise due to the extensive use of TPN in neonates [12]. However, the most established
complications due to prolonged TPN feeding are PNALD, gut atrophy, and BPD.

4.1. Parenteral Nutrition, Oxidant Load and Liver Diseases

PNALD is defined as a heterogeneous injury of the liver, characterized by cholestasis,
steatosis, and, eventually, fibrosis and cirrhosis [77,123]. Several animal experiments
in piglet, guinea pig, and rat models have demonstrated that a continuous infusion of
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oxidized TPN solution for some days affects hepatobiliary function. Bhatia et al. [124]
claimed that 10 days of infusion of light-exposed TPN to rats leads to hepatobiliary disease.
Morin et al. [17] also observed liver steatosis after 5 days of TPN in one-month-old guinea
pigs. TPN feeding for 7 days to male one-month-old Sprague Dawley rats also led to the
development of liver diseases [15]. Additionally, in humans, newborn infants (>1000 g)
who received TPN for a longer period (>7 days) developed PNALD [14]. Although TPN-
induced PNALD is a well-established consequence of intravenous feeding, its aetiology is
still unclear.

The reasons for the development of PNALD in neonates may be due to the compo-
sition of omega-3 and omega-6 fatty acids, the amount of phytosterols, parenteral lipid
load, and different compositions of non-lipid nutrients in TPN [78,125,126]. For example,
soy-based parenteral lipid emulsions, containing high concentrations of phytosterol and
omega-6 fatty acids, have become known as risk factors for cholestasis and hepatocellular
damage [79]. This association manifests as a significant association between the accumula-
tion of circulating phytosterols and the elevation of liver enzymes in neonates [127]. The
accumulation of phytosterols also leads to higher bile acid secretion and causes cholestasis
in TPN-fed piglets [77]. In fact, long-chain polyunsaturated fatty acids are more prone
to damage by peroxidation, resulting in free radical peroxide production, which can con-
tribute to the liver injury detected in PNALD [125,128]. Lipid emulsions with vitamin E
undoubtedly reduce the risk of peroxidation due to their antioxidant capacity, and protect
lipid membranes from oxidation [129]. Omegaven, a lipid emulsion containing purely
fish oil, also has hepatoprotective effects [130,131], which may be due to its rich content in
vitamin E and/or the lack of phytosterols. In addition to the above number of aetiologies
hypothesized to explain PNALD, the lack of enteral feeding is also one of the key reasons
for PNALD, because it leads to gut atrophy and disruption of the enterohepatic circula-
tion of bile acids [16,132]. Hence, liver disease may also be due to intestinal failure, as a
result of exclusive PN feeding, which is referred to as intestinal failure-associated liver
disease [133,134]. The development of PNALD in neonates is multifactorial; therefore, the
term “intestinal failure-associated liver disease” is preferred to explain liver disease due
specifically to intestinal failure as a result of TPN feeding [135].

The absence of enteral feeding prevents the stimulation of receptors, hormones, and
growth factors. It also blocks the normal gut–liver crosstalk by reducing downstream
signaling to the liver via portal circulation [136]. For example, farnesoid X receptor (FXR),
a ligand-activated transcription factor, is expressed in the terminal ileum and is regulated
by bile acids. Lack of enterohepatic circulation suppresses the FXR and reduces hepatic bile
acid production by modulating cholesterol 7-α-hydroxylase (CYP7A1). Reduced FXR ex-
pression subsequently reduces the activation of fibroblast growth factor 19 (FGF19), which
reduces protein synthesis in the liver and may exacerbate liver injury due to PNALD [137].
Bile acid absorption in the ileum during enterohepatic circulation is linked with the stimu-
lation of FXR [138]. Thus, the enteral administration of chenodeoxycholic acid can serve as
a ligand for FXR, thereby preventing hepatic injury [132]. The gut microbiota also performs
a vital function in the health of infants. It has been suggested that the administration
of TPN alters the composition of gut microbiota because of the lack of enteral feeding
and starvation of bacteria, which leads to bacterial translocation. Exclusive TPN can also
cause the favourable growth of Gram-negative, endotoxin-producing bacteria, which can
exacerbate systemic bacterial infection. These events can result in the suppression of bile
acid transporters, and eventually, hepatic injury by endotoxin- and cytokine-mediated
suppression [136]. Although the mechanisms are complex, the lack of enteral stimula-
tion during TPN feeding can lead to the impaired enterohepatic metabolism of bile acids,
leading to profound liver injury and potentially life-threatening sepsis.

4.2. Parenteral Nutrition and Gut Atrophy

In growing neonates, exclusive TPN leads to significant functional and morphological
gut atrophy; however, the mechanisms and consequences of atrophy are poorly under-
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stood. The atrophied gut leads to a reduction in intestinal metabolic capacity, diminished
absorptive capacity, and compromised de novo synthesis of many nutrients, including
polyamines and amino acids such as arginine [139]. Moreover, prolonged gut atrophy also
leads to intolerance to the reintroduction of oral feeds and complicates the transition from
parenteral to enteral feeding. Niinikoski et al. [140] reported that gut atrophy is a direct
result of a parenteral feeding-induced rapid suppression of blood flow in the superior
mesenteric artery (by 30% in under eight hours), which preceded small intestinal tissue
atrophy and lowered protein synthesis. As a result, clinical practice during PN feeding
often includes minimal enteral nutrition, which involves small volumes of oral feeding
to stimulate gastrointestinal function and growth to prevent atrophy. The mechanism
by which enteral stimulation improves enteral feeding tolerance is still unclear, but the
primary physiological outcome necessary for improving gut atrophy and recovery during
TPN is improved mesenteric blood flow [140]. Previously reported studies have shown that
mesenteric blood flow can predict the early feeding tolerance of preterm infants [141,142].
Notably, small-intestinal blood flow is regulated by NO, which is synthesized from arginine.
In neonates, because arginine synthesis depends on small-intestinal metabolism [139], gut
atrophy exacerbates arginine availability and NO synthesis, further reducing intestinal
blood flow. Hence, arginine-supplemented TPN can help maintain the integrity of the
small intestine through an increased rate of protein synthesis and migration of enterocytes
and serves as a precursor of NO synthesis [143].

As already discussed, NO availability is also sensitive to oxidative stress. Huber et al. [144]
conducted a study to examine the effects of light-protection of TPN and of N-acetyl cys-
teine (NAC), the limiting amino acid for the synthesis of glutathione (i.e., the primary
intracellular antioxidant), on the superior mesenteric artery blood flow, gut morphology,
and oxidative status of piglets. They found that the superior mesenteric artery blood flow
rate declined over six days for all treatment groups (light-protected TPN, light-protected
NAC-enriched TPN, light-exposed TPN, and light-exposed NAC-enriched TPN), consistent
with previously observed effects of TPN [140]. However, by day 6 of TPN feeding, the
light-protected TPN group showed only a 34% reduction in blood flow from baseline,
which was significantly better than the 45% to 63% reduction in blood flow in the other
groups. They concluded that the photoprotection of the TPN solution effectively amelio-
rated the PN-associated decline in the superior mesenteric artery blood flow. However,
NAC supplementation surprisingly offset this amelioration. They also observed a 25%
reduction in hepatic lipid peroxidation when TPN was protected from light. Therefore,
TPN redox status can affect functional outcomes in the neonatal gut, and minimizing
in vitro oxidation in TPN would have clinical impacts.

The mechanisms behind the lack of enteral stimulation and gut atrophy may also
involve enterohepatic pathways. For example, some animal studies have shown that
the protein-coupled bile acid-activated receptor, also called Takeda G protein-coupled
receptor (TGR5), rich in the crypts of the intestine, is involved in the regulation of gut
atrophy [145–147]. The expression of TGR5 is regulated by primary and secondary bile
acids [148]. Jain et al. [149] observed that the administration of an agonist of TGR5, namely,
oleanolic acid, which stimulates TGR5 expression, reduces villous atrophy by increasing
the villous height/crypt depth ratio of TPN-fed piglets, and doubling small intestinal
weight. Guzman et al. [16] also reported that TPN feeding to piglets for 14 days resulted in
a significant elevation of serum bilirubin (a biomarker of cholestatic liver injury), serum
bile acids, bile acid deposition within intra-parenchymal cells, and an increased hepatic
cholestasis score, compared to enterally fed piglets. They also showed significant villous
atrophy and reduction in the thickness of muscularis mucosa with TPN feeding. Molecular
studies on gut-systemic signaling regulators revealed that TPN-fed piglets exhibited a
downregulation of liver FXR expression, liver constitutive androstane receptor (CAR),
gut FXR, G-coupled bile acid receptor, epidermal growth factor (EGF), organic anion
transporter (OAT), mitogen-activated protein kinase-1 (MAPK1), and sodium glucose-
linked transporter (SGLT-1), compared to enterally fed piglets [16]. These studies together
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suggest that gut atrophy could be due to reduced blood supply as well as an interruption
of hepatobiliary circulation.

4.3. Parenteral Nutrition and BPD

BPD is a chronic pulmonary disease of preterm neonates. The aetiology of BPD
is multifactorial, including ventilatory injury, prenatal inflammation and infection, and
hyperoxia. Oxidative stress is one of the important factors causing BPD in neonates [90].
Infants who excreted higher concentrations of urinary ascorbyl peroxides were significantly
more likely to develop BPD [90]. A guinea pig model demonstrated that the oxidant
molecules in TPN cause adverse effects on biochemical and histological parameters in
the lungs [18]. Indeed, low-birth-weight infants fed TPN contaminated with ascorbyl
peroxides were more likely to develop BPD [90]. Lavoie et al. [150] reported that the
peroxides from TPN caused increased collagen deposition in the alveoli and increased the
gene expression of procollagen mRNA. Animals infused with MVP or TPN had reduced
alveolarization, even when these solutions were adequately photo-protected [151]. Adding
the antioxidant glutathione to TPN may have beneficial effects on lung health via the
reduction in apoptosis, maintenance of redox potential, and elevation of the alveolarization
index of lung tissue [17,152]. From these animal and clinical studies, it is clear that oxidant
load is a key predictor of lung function in rapidly developing neonates.

4.4. Biomolecules in the Body Affected by Oxidized TPN

Generally, outcomes of oxidative stress occur as a result of an imbalance between
pro-oxidant and antioxidant levels. An infusion of hydroxyl radicals and hydroperoxyl
radical-contaminated TPN attacks cell membrane lipids. Indeed, reactive hydroperoxides
further react with polyunsaturated fatty acids in cell membranes and produce lipid peroxyl
radicals, and eventually lipid peroxides, through three steps: initiation, propagation, and
termination [36] (Figure 2). Brain tissue is extremely susceptible to oxidative injury because
it consumes a relatively high amount of oxygen compared to other tissues [153], and it
has an abundant amount of polyunsaturated fatty acids. For instance, neuroprostane,
which is produced from the free-radical-mediated oxidation of docosahexaenoic acid
in nervous tissue, is highly concentrated in the neuronal membrane. Cholesterol and
linoleate are abundant lipids in vivo, and their free-radical-mediated oxidations yield
7-hydroperoxycholesterol (7-OOHCh) and hydroperoxyl octadecadienoate (HPODE), re-
spectively. The aldehydes in TPN, including 4-hydroxy-2-nonenal, are highly reactive,
and they damage proteins and DNA to produce carbonylated proteins and 7,8-hydroxy-2′-
deoxyguanosine, respectively [154]. Similarly, oxidative lipid products in circulation can
cause the oxidation of low-density lipoproteins, which ultimately leads to cardiovascular
diseases. Research on oxidized lipoprotein levels in infants receiving TPN are limited, but
likely play a key role in metabolic perturbations, which may have long-term consequences.

5. Conclusions

Many of the clinical complications in TPN-fed neonates can be related to oxidative
stress in early life. Newborns have an immature and inadequate antioxidant system
to neutralize the oxidants generated in TPN, and administered via intravenous feeding
regimens. Moreover, typical TPN solutions contain high concentrations of pro-oxidant
nutrients, with few antioxidants that could limit oxidant formation. Furthermore, typical
environmental conditions can induce the formation of oxidants in TPN, including light
exposure and/or clinical phototherapy while receiving TPN, exposure to oxygen during the
preparation and infusion of TPN, and inadequate long-term storage conditions leading to
the instability of nutrients. Major peroxides found in TPN are hydroxyl and hydroperoxyl
radicals, MDA, isoprostane and 4-hydroxy-2-nonenal. Infants exposed to contaminated
TPN for an extended period of time may develop clinical complications, including PNALD,
BPD, hepatobiliary dysfunction, and gut atrophy. Moreover, the oxidation of amino acids
limits some essential amino acids for vital functions, including NO synthesis, which is
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required to maintain blood flow to compromised organs. Evidence from various animal
and clinical studies recommends the supplementation of antioxidants, and the reduction
in pro-oxidants in TPN, as well as the optimization of environmental conditions to limit
oxidant formation during TPN manufacture and delivery. These modifications also need
to consider the dietary adequacy of nutrients for TPN-fed neonates. The evidence suggests
that some potentially beneficial modifications include higher arginine and cysteine for NO
and glutathione synthesis, respectively, reductions in iron and copper concentrations, and
protection from light; such modifications to optimize TPN to minimize oxidant load also
need to be systematically tested in a clinical setting.
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