
Library.

UNIVERSITY OF JAFFNA, SRI LANKA BACHELOR OF PHARMACY THIRD YEAR FIRST SEMESTER EXAMINATION -OCTOBER 2019 PHAMC 3114 MEDICINAL CHEMISTRY I - PAPER II

Date: 28. 10. 2019 Time: 2 Hours

Answer all six questions.

1.	1.1. List the requirements that should be considered in the designing of cholinergiagonists.	
		(10 Marks)
	1.2 Describe the development of Bethanechol from acetylcholine as the lead compound.	(60 Marks)
	1.3 Discuss the advantages and disadvantages of various tubocurarine analogues	(30 Marks)
2.	2.1. Name two catecholamines and draw their structures.	(15 Montra)
	2.2. Explain the Structure Activity Relationship (SAR) of catecholamines.	(15 Marks)
	2.3. Explain the reason which led to the development of second generation	(40 Marks)
	beta-blockers.	(15 Marks)
	2.4 Diagrammatically explain how the structure of Practolol is designed to act	
	as a second generation beta-blocker?	(30 Marks)
3	3.1. Explain how Sulfathiazole causes toxicity?	(20)
٥.		(30 Marks)
	3.2. Explain how Sulfathiazole can be modified to reduce toxicity?	(30 Marks)
	3.3. Name two drugs that are combined in Co-trimoxazole.	(10 Marks)
	3.4. Describe the mechanism of action of Co-trimoxazole.	(30 Marks)
4.	4.1. Write two (02) natural sources of cardiac glycosides.	(10 Marks)
	4.2. Explain the mechanism of action of cardiac glycosides.	(30 Marks)
	4.3. Discuss the chemical structure of cardiac glycosides.	
	and situation of cardiae glycostaes.	(60 Marks)
5.	5.1. Describe the ATP binding site of protein kinases with the help of diagram.	(50 Marks)
	5.2. Explain the binding interactions of Marimastat with matrix metalloproteinases5.3. Write the requirements that are considered in designing of second generation	. (40 Marks)
	matrix metalloproteinase inhibitors.	(10 Marks)

6. 6.1. Explain the mechanism of action of Cisplatin.

(30 Marks)

6.2.

$$H_2N$$
 H_3
 H_4
 H_5
 H_5
 H_6
 H_6
 H_7
 H_8
 H_8

The above drug 'A' is a farnesyl transferase inhibitor used in the treatment of cancer.

Discuss the development of 'A' from a tetra peptide as the lead compound. (70 Marks)

UNIVERSITY OF JAFFNA, SRI LANKA BACHELOR OF PHARMACY SECOND YEAR FIRST SEMESTER EXAMINATION, OCT-2019 PHAMM 2111-PHARMACEUTICAL MATHEMATICS

Date: 29.10.2019 Time: One hour

Answer All Questions

1. (a) i. Show that the roots of the equation $x^2 + (mx + c)^2 = a^2$ are equal if $c^2 = a^2(1 + m^2)$.

ii. Prove that if α and β are roots of the equation $x^2 - px - p - c = 0$ then $(1 + \alpha)(1 + \beta) = 1 - c$.

(b) Prove that

i.
$$\log(ab^2) - \log(ac) + \log(bc^4) - 3\log(bc) = 0;$$

ii.
$$\log\left(\frac{a^2}{bc}\right) + \log\left(\frac{b^2}{ca}\right) + \log\left(\frac{c^2}{ab}\right) = 0;$$

iii. if $\log(x+y) = \log x - \log y$ then $x(1-y) = y^2$.

(c) Prove that

i.
$$\sqrt{\frac{1-\sin\theta}{1+\sin\theta}} = \sec\theta - \tan\theta;$$

ii.
$$\frac{\sin \theta + \cos \theta}{\tan^2 \theta - 1} = \frac{\cos^2 \theta}{\sin \theta - \cos \theta};$$

iii. if $m = \tan \theta + \sin \theta$ and $n = \tan \theta - \sin \theta$ then $m^2 - n^2 = 4\sqrt{mn}$.

(d) Find the values of $\sin \theta$, $\cos \theta$ and $\tan \theta$, when

i.
$$\theta = -180^{\circ}$$
;

ii.
$$\theta = \frac{11\pi}{3}$$
;

iii.
$$\theta = 450^{\circ}$$
.

2. (a) Differentiate the following with respect to x:

i.
$$y = e^{3x} \tan x$$
;

ii.
$$y = \frac{(1-3x)(x^2+3)}{x(2x-1)}$$
;

iii.
$$y = \sqrt{x}(2x - 1)(x^3 - x);$$

iv.
$$y = \frac{\sin 3x}{4 + 5\cos 2x}.$$

(b) Prove that if $y = 3\cos x + \sin x$, then

i.
$$\cos x \left(\frac{dy}{dx}\right) + y \sin x - 1 = 0;$$

ii.
$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y - 10\sin x = 0.$$

(c) Find the relative extrema of the function $f(x) = x^3 + 3x^2 - 9x - 13$ and classify them.

(d) Find the following integrals:

i.
$$\int \left(\frac{1}{3x} - \frac{3}{2x^2} + e^2 + \frac{\sqrt{x}}{2}\right) dx;$$

ii.
$$\int x(2x+1)^2 dx;$$

iii.
$$\int \sin^2 x \, dx$$
;

iv.
$$\int \frac{2x \ln(x^2+1)}{x^2+1} dx$$
, you may use the substitution $t=x^2+1$.

End of Exam