UNIVERSITY OF JAFFNA, SRI LANKA BACHELOR OF PHARMACY ## FIRST YEAR SECOND SEMESTER EXAMINATION – JANUARY, 2016 PHACH 1273 PHARMACEUTICAL CHEMISTRY I | PHACH 12/3 PHARMACEUTICAL CHEMISTRET | | | | | | | |--------------------------------------|------------|---|--------------------------|--|--|--| | Dat | e: 05. | 02.2016. | Time: 3 Hours | | | | | ANSWER ALL SIX QUESTIONS. | | | | | | | | 1. | | (5/ 3/) | | | | | | - | 1.1
1.2 | Write short note on 'Rutherford experiment'. Define the followings: 1.2.1 Compton effect | (10 Marks) | | | | | | | 1.2.1 Compton effect | (10 Marks) | | | | | | | 1.2.2 Heisenberg uncertainty principle | (10 Marks) | | | | | | | 1.2.3 Black body Radiation | (10 Marks) | | | | | | 1.3 | 1.3.1 Dèfine Photoelectric effect | (10 Marks) | | | | | | | 1.3.2 The work function for lithium is 4.6×10^{-19} . Calculate the | | | | | | | | lowest frequency of light that will cause photoelectric emission. | | | | | | | | What is the maximum energy of the electrons emitted when light | (20 14 1) | | | | | | | of 7.3 x 10 ¹⁴ Hz is used? | (20 Marks) | | | | | | | 1.3.3 Write down de Broglie's equation.1.3.4 Find the de Broglie wavelength for an electron moving at | (10 Marks) | | | | | | | the speed of 6.0×10^6 m/s (mass of an electron is 9.1×10^{-31} kg). | (20 Marks) | | | | | | | the speed of 0.0^10 m/s (mass of an electron is 9.1^10 kg). | (20 Marks) | | | | | 2. | | | | | | | | | 2.1 | Define followings | | | | | | | | 2.1.1 Primary Valance | (05 Marks) | | | | | | | 2.1.2 Co-ordination number | (05 Marks) | | | | | | | | | | | | | | 2.2 | 2.2.1 Define Ligand | (10 Marks) | | | | | | | 2.2.2 Classify ligands with suitable example | (20 Marks) | | | | | | 2.3 | Diagrammatically illustrate the isomerism of | (10) (1) | | | | | | | 2.3.1 [Cu(NH ₃) ₄][PtCl ₄] | (10 Marks) | | | | | | | 2.3.2 [Co(NH ₃) ₄ (NO ₂)(SO ₄)]
2.3.3 [Ni(en) ₃] ²⁺ | (30 Marks)
(10 Marks) | | | | | | 2.4 | List the pharmaceutical applications of Co-ordination | (10 Marks) | | | | | | 2.4 | compounds. | (10 Marks) | | | | | | | compounds. | (10 Marks) | | | | | 3. | | | | | | | | 7.1 | 3.1 | 3.1.1 Define Gravimetry. | (10 Marks) | | | | | | | 3.1.2 Outline the advantages of gravimetric analysis | (20 Marks) | | | | | | 3.2 | For PH ₅ and XeF ₄ | | | | | | | | 3.2.1 Draw the Lewis electron structure of the molecules.3.2.2 Assign an AXmEn designation; then identify the LP-LP, | (10 Marks) | | | | | | | LP-BP, or BP-BP interactions and predict deviations in bond | | | | | | | | angles. | (20 Marks) | | | | | | | 3.2.3 Describe the molecular geometry. | (10 Marks) | | | | | | 3.2 | | a | | | | | | 3.2 | Explain the molecular geometry of CH ₄ and BeH ₂ by using valence bond theory. | (30 Marks) | | | | | | | valence bolid theory. | (30 Iviains) | | | | | 4. | 4.1
4.2 | Define 'Molecular orbital theory'. For O_2 , NO and N_2 . | (10 Marks) | |----|------------|---|------------| | | | 4.2.1 Draw molecular orbital energy level diagrams. 4.2.2 What is main difference between N₂ and O₂ diagram, | (30 Marks) | | | | outline the reasons. 4.2.3 What is the different between N_2 and NO molecular | (10 Marks) | | | | orbital diagram? 4.2.4 Write down the molecular orbital electronic configuration | (10 Marks) | | | | of the above molecules. | (10 Marks) | | | | 4.2.5 Find out the bond order of the above molecules. | (10 Marks) | | | | 4.2.6 Explain the stability of the above molecules. | (20 Marks) | | 5. | | | | | | 5.1 | Briefly describe the following terms with suitable examples. | | | | | 5.1.1 Resonance hybrid | (05 Marks) | | | <i>5</i> 2 | 5.1.2 Resonance contributor | (05 Marks) | | | 5.2 | Draw the resonance structures for the following benzyl radical. | | | | | Ph-CH ₂ | (15 Marks) | | | 5.3 | Indicate whether the following atoms or ions are paramagnetic | | | | | or diamagnetic. | | | | | 5.3.1 Chlorine atoms | (05 Marks) | | | | 5.3.2 Zinc atoms | (05 Marks) | | | | 5.3.3 Fe ²⁺ ions | (05 Marks) | | | | 5.3.4 Br ions | (05 Marks) | | | 5.4 | 5.4.1 List the motions which contribute the origin of magnetic moment of materials. | (10 Marks) | | | | 5.4.2 Briefly describe the determining factors of the magnetic | (45 Marks) | | | | property of the materials. | | | 6. | | | | | | 6.1 | Briefly explain the sources of impurities of the pharmaceutical | (50 Marks) | | | | substances? | ** | | | 6.2 | Briefly describe any standard methods for the limit tests of the following chemicals. | | | | | 6.2.1 Limit test for chloride | (15 Marks) | | | | 6.2.2 Limit test for sulphate | (15 Marks) | | | 6.3 | List any five methods used for the preparation of Oxygen. | (10 Marks) | | | 6.4 | List one main pharmaceutical usage of boran, nitrogen, chlorine | , | | | | and iodine. | (10 Marks) | ## xxxxxxxxxxx